If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-18t-21=0
a = 3; b = -18; c = -21;
Δ = b2-4ac
Δ = -182-4·3·(-21)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-24}{2*3}=\frac{-6}{6} =-1 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+24}{2*3}=\frac{42}{6} =7 $
| 5.6+2.3p=3.29*10 | | -49+3x+2=6x-13-4x | | 9(x+3)=4(2x+8) | | -x/9=-8^9 | | 3(1+2x)=-21 | | 5k-5=-75 | | 4/7m=18-2/1m | | 4-x=2(x-1 | | 0.8x=11 | | 2.5-(t-2)-6=9 | | m4+8=10 | | 3q-7-6q=23 | | 2(w+1)=-4w-34 | | 11x-16=90 | | -24=-3w+3 | | 2(3x-4)-(2x+5)-12=-2(4x+6)+2x | | 60/a=12 | | 0.3=2x+1/x+1 | | -6=2b-8+2 | | 2(4z-6)=(3z-7) | | (x/7)=(2x/3)-11 | | 5a-4=-1(4-5a) | | -33=n+(-29) | | X-x+2x=8 | | 2q-27=17 | | n-3.7=-3.7 | | 9/x^2+12x=85 | | -3(7c+6)=-4 | | (2x/3)+(x/2)=63 | | 3(1+4x)+7x=3(1-8x) | | 24=m-24 | | 5+4x=6+3x |